Acknowledgements

This report was developed in collaboration with the following entities:

Keith Selman
Vanessa Guerra
Art Botello
Angie Quijano

David Freidenfeld, AICP
Jennifer Bennett-Reumuth
Madhu Narayanasamy, AICP
Linhong Kang
Janis Burall, AICP
Charlie Sullivan
Isabel Victoria, PE

Rudy Rivera, PE
Linda Vela

The preparation and publication of this report was financed in part through grants from the Federal Highway Administration, the Federal Transit Administration, and the Texas Department of Transportation. All opinions, findings, and conclusions presented in this report reflect the view of the Plan authors and do not necessarily reflect the official views or policy of the Federal Highway Administration, the Federal Transit Administration, or the Texas Department of Transportation.
Table of Contents

Chapter 1: Planning Context

Introduction ..1-1
Laredo MPO ..1-1
 - MPO Planning Documents ..1-2
 - MPO Structure ...1-2
Legislative Mandates ..1-3
 - Transportation Planning Factors ...1-4
 - Additional Transportation Planning Factors ...1-6
 - Development and Content of the Metropolitan Transportation Plan1-6
 - Recent Legislative Actions ...1-12
 - Consistency with State Plans ..1-12
Other Related Plans and Studies ..1-13
MTP Development Process ...1-15
 - Vision and Guiding Principles ...1-16
 - Public Outreach and Stakeholder Involvement ..1-17
Plan Amendment Process ..1-21
MTP Overview ..1-21

Chapter 2: Regional Context

Introduction ...2-1
Geography ..2-1
History of Laredo ...2-4
Land Use ..2-6
 - History of Laredo Development ..2-6
 - Municipal Annexation ...2-6
 - Historic Districts and Landmarks ...2-8
 - Major Traffic Generators ...2-9
 - Current Policies ...2-14
 - Connecting land use and transportation planning ..2-15
 - Current Land Use ..2-15

Chapter 3: Socioeconomic Data

Introduction ..3-1
Current Socioeconomic Data ..3-1
 - Population ..3-1
 - Households ...3-2
 - Employment ..3-3
 - Environmental Justice ...3-7
 - Other Transportation related Socioeconomic Statistics ..3-13
Future Socioeconomic Data ..3-17
 - Future Growth Patterns ..3-18
Nuevo Laredo ...3-24
Chapter 4: Transportation System

Introduction .. 4-1
Major Roadways ... 4-1
 Interstate 35 ... 4-1
 Business Interstate 35 ... 4-1
 US Highways ... 4-2
 State Highways ... 4-2
 Farm to Market Roads ... 4-3
 City Streets ... 4-3
 National Highway System .. 4-3
Daily Traffic Volumes ... 4-7
Vehicle Miles Traveled ... 4-8
Truck Volumes .. 4-8
Level of Service Analysis .. 4-9
Crash Data .. 4-12
Bridges ... 4-14
 International Bridges ... 4-16
Public Transportation ... 4-24
 Transit Services ... 4-24
Bicycle and Pedestrian Facilities ... 4-32
Air Transportation ... 4-33
Rail .. 4-36

Chapter 5: Freight

Introduction .. 5-1
Congressional High Priority Corridors ... 5-1
Freight Infrastructure ... 5-2
 Highway Network .. 5-3
 Railroad Network .. 5-4
 International Border Bridges .. 5-5
 Mexican Multimodal Corridor ... 5-6
 Foreign Trade Zones ... 5-6
 Air Freight Facilities ... 5-7
 Industrial Facilities .. 5-8
Goods Movement ... 5-9
 Value of Trade .. 5-9
 Historical Freight Flows ... 5-10
 Freight Commodities .. 5-11
 Freight Modes .. 5-12
 Air Freight ... 5-12
 Trading Partners .. 5-14
Future Freight Demand .. 5-15
Issues and Challenges ... 5-15
Laredo Freight Plan ... 5-17
Chapter 6: Safety and Security
Introduction ...6-1
Federal Agencies and Programs..6-2
 U.S. Department of Transportation6-2
State of Texas Agencies and Programs6-10
 Texas Department of Transportation6-11
 Texas Department of Public Safety6-12
Regional and Local Agencies and Programs6-15
 South Texas Development Council6-15
 Webb County ...6-16
 City of Laredo ...6-17
 El Metro ..6-21
 Laredo International Airport ...6-23
 Laredo Bridge System ...6-25
Private Railroad Companies ...6-27

Chapter 7: Roadway Plan
Introduction ...7-1
Roadway Construction ..7-2
Best Practices and Strategies for Roadway Improvements 7-2
 System Preservation Programs7-3
 Travel Demand Management ..7-5
 Transportation System Management and Operational Efficiency 7-6
 Traffic Calming ...7-11
 Access Management ...7-11
 Land Use and Urban Design Considerations7-11
Special Issues...7-12
 Interstate 35 and Proposed Interstate 697-13
 Loop 20 ...7-14
 At-Grade Railroad Crossings ...7-16
 Fifth International Bridge ..7-16
Laredo Roadway Plan ..7-16
 Project Evaluation Criteria ...7-16
 Roadway Projects ...7-18

Chapter 8: Transit Plan
Introduction ...8-1
Transit Issues ...8-1
 Laredo Transit Development Plan8-2
 Captive and Choice Riders ..8-3
 Ridership Factors ..8-4
 Growing Elderly Population ..8-4
Best Practices for Public Transit8-4
 Continually Reevaluate Transit Operations8-4
Chapter 8: Transit Plan (continued)

System Preservation and Maintenance ... 8-5
Land Use and Development Considerations .. 8-6
Transit Amenities ... 8-6
Integrating Transit Considerations with Designing Roadway Improvements 8-7
Intelligent Transportation Systems (ITS) for Transit ... 8-7
Coordination among Transit Entities ... 8-7
Marketing ... 8-8
Laredo Transit Plan ... 8-8
Funding and Revenue ... 8-8
Current Funding Priorities .. 8-9
Future Unfunded Transit Needs .. 8-10

Chapter 9: Bicycle and Pedestrian Plan

Introduction .. 9-1
Laredo Regional Interest .. 9-1
Bicycle and Pedestrian Requirements ... 9-1
Best Practices for Bicycle and Pedestrian Planning .. 9-3
 Integrating Land Use and Transportation ... 9-3
 Maintaining a Database of Bicycle and Pedestrian Facilities 9-3
 Preserving Future Bicycle and Pedestrian Corridors 9-4
 Incorporating Bicycle and Pedestrian Elements into Roadway Projects 9-4
 Marketing and Encouraging Bicycling and Walking 9-4
 Education/Safety Programs .. 9-4
 Safe Routes to School .. 9-5
 Funding .. 9-5
Laredo Bicycle and Pedestrian Plan .. 9-6

Chapter 10: Financial Plan

Introduction ... 10-1
Financial Constraint .. 10-1
 Revenue Projections .. 10-2
 Cost Estimates ... 10-5
 Estimated Revenue vs. Estimated Costs ... 10-5
Other Financing Techniques ... 10-10
 Border Infrastructure Funding .. 10-10
 Texas Mobility Fund .. 10-10
 Bonds .. 10-11
 Toll Roads .. 10-11
 Regional Mobility Authority .. 10-11
 Comprehensive Development Agreements .. 10-11
 Pass-Through Toll Agreements ... 10-11
 State Infrastructure Bank ... 10-12
 Rural Rail Transportation District ... 10-12
Conclusion .. 10-12
Chapter 11: Benefits, Impacts, and Next Steps

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>11-1</td>
</tr>
<tr>
<td>Benefits and Impacts</td>
<td>11-1</td>
</tr>
<tr>
<td>Economic Benefits</td>
<td>11-2</td>
</tr>
<tr>
<td>Transportation System Benefits</td>
<td>11-2</td>
</tr>
<tr>
<td>Environmental Assessment</td>
<td>11-3</td>
</tr>
<tr>
<td>Natural Resources</td>
<td>11-4</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>11-4</td>
</tr>
<tr>
<td>Environmental Impacts</td>
<td>11-4</td>
</tr>
<tr>
<td>Environmental Mitigation Activities</td>
<td>11-8</td>
</tr>
<tr>
<td>Air Quality</td>
<td>11-9</td>
</tr>
<tr>
<td>Climate Change</td>
<td>11-10</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>11-11</td>
</tr>
<tr>
<td>Next Steps</td>
<td>11-15</td>
</tr>
<tr>
<td>Performance Monitoring</td>
<td>11-15</td>
</tr>
<tr>
<td>Congestion Management Process</td>
<td>11-16</td>
</tr>
<tr>
<td>Funding Strategies</td>
<td>11-17</td>
</tr>
<tr>
<td>Plan Amendment Process</td>
<td>11-17</td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK.
LIST OF FIGURES

Chapter 1: Planning Context

Figure 2-1: Regional Setting ... 2-1
Figure 2-2: Laredo MPO Planning Area .. 2-2
Figure 2-3: Floodplains .. 2-3
Figure 2-4: City of Laredo Annexation .. 2-7
Figure 2-5: Historic Districts and Landmarks .. 2-9
Figure 2-6: Major Traffic Generators .. 2-11
Figure 2-7: Existing Land Use, with recent growth areas 2-17

Chapter 2: Regional Context

Figure 2-1: Regional Setting ... 2-1
Figure 2-2: Laredo MPO Planning Area .. 2-2
Figure 2-3: Floodplains .. 2-3
Figure 2-4: City of Laredo Annexation .. 2-7
Figure 2-5: Historic Districts and Landmarks .. 2-9
Figure 2-6: Major Traffic Generators .. 2-11
Figure 2-7: Existing Land Use, with recent growth areas 2-17

Chapter 3: Socioeconomic Data

Figure 3-1: Population Density by Traffic Analysis Zone, 2007 3-3
Figure 3-2: Webb County Employment, 1990 to 2008 3-4
Figure 3-3: Webb County Employment by Sector, 2008 3-4
Figure 3-4: Employment Density by TAZ, 2008 3-6
Figure 3-5: Density of Families in Poverty by Block Group, 2000 3-9
Figure 3-6: Density of Persons over 65 by Block Group, 2000 3-10
Figure 3-7: Density of Disabled Persons by Block Group, 2000 3-11
Figure 3-8: Colonias ... 3-12
Figure 3-9: Travel time to work, Webb County, 1990, 2000, 2007 3-14
Figure 3-10: Daily Vehicle Miles of Travel for Webb County 3-14
Figure 3-11: Number of Vehicles Available, Webb County 3-16
Figure 3-12: Platted Developments ... 3-19
Figure 3-13: Attraction Factors by Traffic Analysis Zone 3-21
Figure 3-14: Development of 2035 Population Projection 3-22
Figure 3-15: Development of 2035 Employment Projection 3-23

Chapter 4: Transportation System

Figure 4-1: National Highway System Roadways 4-4
Figure 4-2: Functional Classification of Roadways 4-6
Figure 4-3: Daily Vehicle Miles Traveled, Webb County 4-8
Figure 4-4: Daily Truck Volumes, 1998 to 2007 4-9
Figure 4-5: Existing Level of Service, 2008 ... 4-10
Figure 4-6: Future Level of Service, 2035 .. 4-11
Figure 4-7: Top 20 Crash and All Fatal Crash Locations, 2005 to 2007 4-13
Figure 4-8: Number of Bridges by Decade Built 4-14
Figure 4-9: Bridges by Decade Built .. 4-15
Figure 4-10: International Border Crossings .. 4-17
Figure 4-11: Gateway to the Americas Bridge Crossings, 2001 to 2007 4-18
Figure 4-12: Juarez Lincoln Bridge Crossings, 2001 to 2007 4-19
Chapter 4: Transportation System (continued)

Figure 4-13: Laredo-Colombia Bridge Crossings, 2001 to 2007 ... 4-20
Figure 4-14: World Trade Bridge Crossings, 2001 to 2007 .. 4-21
Figure 4-15: Total Bridge Crossings, 2007 ... 4-22
Figure 4-16: Total Bridge Crossings, 2001 to 2007 .. 4-22
Figure 4-17: El Metro System Map .. 4-28
Figure 4-18: El Metro Operating Cost Funding Sources, 2007 ... 4-31
Figure 4-19: Crashes involving Bicycles and Pedestrians, 2005 to 2007 4-33
Figure 4-20: Annual Airport Passengers ... 4-34
Figure 4-21: Rail Network .. 4-36

Chapter 5: Freight

Figure 5-1: Congressional High Priority Corridors .. 5-2
Figure 5-2: Freight Transportation Infrastructure ... 5-3
Figure 5-3: Truck Route Level of Service, 2008 .. 5-4
Figure 5-4: Truck Route Level of Service, 2035 .. 5-4
Figure 5-5: Lázaro Cárdenas – San Luis Potosi – Monterrey – San Antonio Corridor 5-6
Figure 5-6: Foreign Trade Zones .. 5-7
Figure 5-7: Regional Industrial Facilities .. 5-9
Figure 5-8: U.S.-Mexico Trade Value, Through Port of Laredo .. 5-10
Figure 5-9: Top Export Commodities ... 5-11
Figure 5-10: Top Import Commodities ... 5-11
Figure 5-11: Import and Export Goods Value by Mode, 2008 ... 5-12
Figure 5-12: Northbound Truck/Rail Crossings, 1995 - 2008 ... 5-12
Figure 5-13: Total Air Cargo at LRD, 1992 - 2008 .. 5-13
Figure 5-14: Projected Trade Value Share by Mode, 2035 .. 5-15
Figure 5-15: Proposed Rural Rail District Rail Project .. 5-18
Figure 5-16: Proposed KCS Rail Project ... 5-18

Chapter 6: Safety and Security

Chapter 7: Roadway Plan

Figure 7-1: TxDOT ITS Deployment .. 7-8
Figure 7-2: City of Laredo ITS Deployment .. 7-9
Figure 7-3: I-35 and I-69 Segment Committees ... 7-14
Figure 7-4: Loop 20 Major Intersections .. 7-15
Figure 7-5: Funding Priorities .. 7-22
Figure 7-6: Unfunded Needs .. 7-25

Chapter 8: Transit Plan

Figure 8-1: Transit Plan .. 8-10
Chapter 9: Bicycle and Pedestrian Plan

Figure 9-1: Bicycle and Pedestrian Plan

Chapter 10: Financial Plan

Chapter 11: Benefits, Impacts, and Next Steps

Figure 11-1: Natural Resources and Fiscally Constrained Projects
Figure 11-2: Cultural Resources and Fiscally Constrained Projects
Figure 11-3: Low Income Areas and Fiscally Constrained Projects
Figure 11-4: Colonias and Fiscally Constrained Projects
LIST OF TABLES

Chapter 1: Planning Context

Table 1-1: MTP Content Requirements ... 1-6

Chapter 2: Regional Context

Table 2-1: Major Traffic Generators .. 1-10
Table 2-2: Land Use .. 1-16

Chapter 3: Regional Context

Table 3-1: Population, Webb County, Texas, and United States 3-1
Table 3-2: Households, Webb County, Texas, and United States 3-2
Table 3-3: Major Employers, 2008 .. 3-5
Table 3-4: Population by Race, 2007 ... 3-8
Table 3-5: Median Household and Family Income, 2007 .. 3-8
Table 3-6: Percent of Commuters by Travel time to Work, 2007 3-13
Table 3-7: Means of Transportation to Work, 2007 ... 3-13
Table 3-8: Means of Transportation to Work, Webb County .. 3-15
Table 3-9: Number of Vehicles Available, 2007 ... 3-16
Table 3-10: Registered Vehicles .. 3-17
Table 3-11: Population Projections for Webb County ... 3-18
Table 3-12: Population and Employment Forecast for Laredo MPO Planning Area 3-18
Table 3-13: Long-term Population and Employment Growth ... 3-20

Chapter 4: Transportation System

Table 4-1: Functional Classification Definitions .. 4-5
Table 4-2: High Traffic Volume Growth Locations .. 4-7
Table 4-3: Top 20 Crash Locations, 2005 to 2007 .. 4-12
Table 4-4: Short-term Border Crossing Improvement Recommendations 4-23
Table 4-5: Current El Metro Fare Structure ... 4-25
Table 4-6: Annual Vehicle Revenue Miles and Hours of Service 4-26
Table 4-7: Annual Passenger Miles and Unlinked Trips ... 4-27
Table 4-8: Current Service Frequency and Ridership by Route 4-29
Table 4-9: Annual Operating Expenses .. 4-30
Table 4-10: Annual Fare Revenues .. 4-31

Chapter 5: Freight

Table 5-1: Storage Facilities in Laredo International Airport .. 5-8
Table 5-2: U.S./Mexico Total Trade Dollars by Port of Entry in Texas 5-10
Table 5-3: Top Trading Partners in the U.S. (Million of Dollars) 5-14
Table 5-4: Top Trading Partners in Mexico (Metric Tons) ... 5-14
Table 5-5: Projected Trade Value Growth by Mode .. 5-15
Table 5-6: Freight Infrastructure Performance Strategies ... 5-17
Table 5-7: Freight Projects ... 5-18
Chapter 6: Safety and Security

Chapter 7: Roadway Plan
Table 7-1: Project Evaluation Criteria ... 7-17
Table 7-2: FY 2010-2011 TIP Projects ... 7-19
Table 7-3: Short-term Funding Priorities ... 7-19
Table 7-4: Long-term Funding Priorities .. 7-20
Table 7-5: Local Projects .. 7-21
Table 7-6: Other Unfunded Needs ... 7-23

Chapter 8: Transit Plan
Table 8-1: Transit Projects ... 8-9

Chapter 9: Bicycle and Pedestrian Plan
Table 9-1: Bicycle/Pedestrian Projects ... 9-7

Chapter 10: Financial Plan
Table 10-1: Annual Average Funding Levels by Category, 2006-2009 10-3
Table 10-2: Projected Roadway Funding ... 10-4
Table 10-3: Projected Transit Funding ... 10-5
Table 10-4: Roadway and Bicycle/Pedestrian Fiscal Constraint 10-7
Table 10-5: Transit Fiscal Constraint ... 10-9

Chapter 11: Benefits, Impacts, and Next Steps
Table 11-1: Environmental Assessment Results .. 11-7
Table 11-2: Potential Environmental Mitigation Activities 11-9
Table 11-3: Fiscally Constrained Projects and Environmental Justice Population 11-14
CHAPTER 4: TRANSPORTATION SYSTEM

Introduction

The Laredo region has a well-established multimodal transportation network including roadways, railroads, a fixed route transit system, and bicycle and pedestrian facilities. This chapter discusses this interconnected network and presents trends that help understand future needs.

Major Roadways

The roadway network within the Laredo Metropolitan Planning area consists of interstate, freeway, arterial, collector, and local roadways. The Texas Department of Transportation (TxDOT) maintains 111.5 centerline miles of state roadways, while Webb County maintains 44.6 centerline miles of roadways, and the City of Laredo maintains 734.6 miles of roadways within the area.

Interstate 35

Often referred to as the NAFTA Superhighway, Interstate 35 (IH 35) travels northward from Laredo, through the heart of Texas, and as far north as the Canadian border in Duluth, Minnesota. Current average daily traffic along IH 35 ranges between 32,000 vehicles per day (vpd) in the northern portion of the MPO Planning area to 118,000 vpd just south of Mann Road. Speed limits range between 30 miles per hour (mph) approaching the international border to 70 mph in rural areas. IH 35 primarily consists of four to six lanes of roadway, but changes into two one-way streets consisting of a total of ten lanes as it approaches the international border.

Business Interstate 35

Business Interstate 35 (BI 35) is locally known as San Bernardo Avenue between IH 35 and Houston Street. Then, it operates along a series of one-way parallel facilities in the urban core of downtown Laredo. The southbound portion of BI 35 operates westerly along Houston Street and thence southerly along Salinas Avenue to the US Customs Port of Entry. The northbound portion of BI 35 operates northerly along Covent Avenue and thence easterly along Matamoros Street at San Bernardo Avenue. Traffic volumes along this roadway range from 12,000 to 25,000 vpd.
US Highways

US 59 begins at IH 35 in downtown Laredo and extends easterly as a four to six-lane roadway (also known as Saunders Street). East of Loop 20 it becomes a two-lane roadway. It transports 3,500 vpd in the far eastern section of the MPO planning area and 36,000 vpd just east of IH 35.

Approaching downtown Laredo from the southern part of the planning area, US 83, also called Zapata Highway, transforms into the one-way pair streets of Chihuahua and Guadalupe. From there, it is co-aligned with IH 35 northward for approximately 14 miles, then veers in a northerly direction towards Abilene. US 83 ranges from a four-lane expressway varying between 55 and 70 mph in some areas, to a four-lane arterial or one-way pair streets in downtown Laredo with speed limits as low as 30 mph. US 83 transports an average daily traffic volume of about 14,000 vpd a few miles north of Rio Bravo to 41,000 vpd just east of IH 35.

State Highways

Loop 20, which is also known as the Bob Bullock Loop, provides a bypass on the eastern side of the City of Laredo. It begins at US 83 in the south, intersects with IH 35 to the north, then travels westward past Mines Road (FM 1472) and ends at the World Trade Bridge. The Bob Bullock Loop ranges from a four-lane to six-lane roadway with speed limits ranging from 40 to 55 mph. As of 2007, the loop experienced an average daily traffic volume of about 19,600 to 41,000 vpd.

SH 255, also known as the Camino Colombia Toll Road, is located in the northwestern region of the Laredo MTP study area and connects the Camino Colombia International Bridge with IH 35 to the north. Within the study area, it contains two to four-lanes of roadway and intersects with FM 255, FM 1472, and FM 3368. SH 255 also has speed limits which range from 50 to 70 mph and an average daily traffic volume of about 870 vpd. The route was officially opened in 2000 as a privately owned toll road intended primarily for commercial vehicles circumventing the congested streets of the City of Laredo.

However, due to an unsuccessful beginning, the toll road was foreclosed in 2003, after which it was auctioned off to a private financial institution. The following year TxDOT bought the toll road and currently operates and maintains it as a tolled state highway.

SH 359 begins at US 83 in the southeastern part of central Laredo, crosses Loop 20, and then proceeds eastward towards Hebbronville and Alice. It is primarily a four-lane roadway with speed limits that vary from 30 to 70 mph with an average daily traffic volume between 8,500 and 19,800 vpd.

State Spur 400 is a four-lane roadway consisting of the eastern portion of Clark Boulevard between Arkansas Avenue and Loop 20. Speed limits range from 35 to 45 mph with average daily traffic volumes around 21,000 vpd.
Farm to Market Roads

Within the Laredo region, TxDOT operates three Farm-to-Market (FM) roads: FM 255, FM 1472, and FM 3338. FM 255 begins at the Camino Colombia International Bridge and continues for about one mile to the intersection of SH 255 and FM 1472. FM 1472, also known as Mines Road, travels in a northwesterly direction from IH 35 just north of downtown Laredo, follows the Rio Grande River, intersects with SH 255 near the Camino Columbia International Bridge, and proceeds further northwest. Near central Laredo, FM 1472 begins as a six-lane roadway and transforms into four lanes as it travels towards SH 255 and then into two lanes further north. Speed limits range from 45 mph in the urban area with 38,000 vpd to 70 mph in the rural area with 420 to 8,200 vpd.

From FM 1472, FM 3338 (also known as Las Tiendas Road) branches off as a two-lane roadway and travels in a northwesterly direction past SH 255. The speed limit on FM 3338 is 55 mph with average daily traffic volumes ranging from 560 to 2,100 vpd.

City Streets

The Laredo road network consists primarily of a grid pattern street system within the incorporated boundaries of Laredo. In recent years, developments have expanded throughout the region with more curvilinear street patterns. These streets are mainly two-lane collector and local access roads with speed limits of 30 mph. Major east/west roadways include Calton Rd, Clark Blvd, Del Mar Blvd, Jefferson St, Lyon St, Park St, and Washington St. Major north/south city streets include Arkansas Ave, Malinche Ave, McPherson Rd, Meadow Ave, Santa Isabel Ave, Santa Maria Ave, and Springfield Ave.

National Highway System

The National Highway System (NHS) is comprised of the Interstate Highway System and other roads that are important to the nation's economy, defense, and mobility. The NHS was developed by the US Department of Transportation in cooperation with the states, local officials, and Metropolitan Planning Organizations. Roadways on the NHS in the Laredo region, shown in Figure 4-1, are eligible to receive NHS funding. Connections from the NHS to major intermodal facilities in Laredo include Bartlett and Maher Avenues connecting US 59 (Saunders Street) to the west side of the airport, and Farragut Street, Juarez Avenue, and Hidalgo Street connecting Interstate 35 to El Metro’s downtown transit center.
Functional Classification

Functional classification is the process by which roadways are grouped into categories according to the character of service they are intended to provide. Individual roads do not serve travel independently; most travel involves movement through a network of roads. Functional classification examines the channelization of traffic throughout a roadway network and defines the role that each roadway plays in serving traffic flow. Two important variables define roadway function: mobility and access. At one end of the spectrum, freeways provide the highest level of mobility and the lowest level of access, serving long-distance trips with minimal access to abutting land uses. Local streets, on the other hand, have numerous driveways and connections to provide local access to businesses and residences and are not intended for use over long distances. Table 4-1 provides additional details regarding the functional classification categories and examples within the Laredo...
regional roadway network. Various functional classification schemes exist, such as those defined within Laredo’s thoroughfare plan and within the regional travel demand model. However, for the purposes of this MTP, FHWA’s functional classification scheme is used.

Table 4-1: Functional Classification Definitions

<table>
<thead>
<tr>
<th>Functional Classification</th>
<th>Characteristics</th>
<th>Example</th>
</tr>
</thead>
</table>
| Interstate | • High speed, divided highway with full control of access and grade separated interchanges
• Moving inter- and intra-regional traffic, particularly long trips in high traffic volume corridors. Providing access between cities and across metropolitan areas
• Normally in excess of 20,000 vehicles per day
• Formally designated by US DOT | Interstate 35 |
| Other Freeway | • High speed, divided highway with full control of access and grade separated interchanges
• Across metropolitan areas and between major activity centers (2 or more miles)
• Normally in excess of 20,000 vehicles per day | Loop 20 west of Interstate 35 |
| Principal Arterial | • Typically divided street with major access points at intersections with the surface street system. Some direct access permitted to abutting land uses
• Serve major centers of activity, with service to abutting land uses secondary to the provision of travel service
• 10,000 to 30,000 vehicles per day | McPherson Blvd
US 83 (Zapata Hwy) |
| Minor Arterial | • Number of lanes and type of median directly relate to traffic volumes and abutting land use
• Augments and feeds primary arterial system and distributes traffic to geographic areas smaller than those served by the higher system, with more emphasis on service to abutting land uses
• 5,000 to 15,000 vehicles per day | Springfield Ave
Meadow Ave south of Chihuahua St |
| Collector | • High access to local streets and driveways
• Connect local streets to the arterial system. Typically used for trips that are near their origin or destination point, primarily connecting neighborhoods within and among sub-regions
• 1,500 to 10,000 vehicles per day | Fenwick Dr
La Pita Mangana Rd |
| Local | • High access to driveways
• Provides direct access to abutting property
• 1,500 or fewer vehicles per day | Basswood Dr
Madera Ave |
The functional classification system should be routinely reviewed to ensure that road use and function is consistent with current travel patterns. Figure 4-2 shows functional classification of the roadway network in the Laredo region. All roads classified as an urban collector and above are eligible to receive federal funding assistance.

Figure 4-2: Functional Classification of Roadways
Daily Traffic Volumes

Table 4-2 presents the absolute growth and percent growth for locations that experienced the increase in daily traffic volumes between 1998 and 2007. The most significant growth occurred along State Loop 20, which highlights the growing importance of the roadway and also the increasing population and development pressure in this part of the region.

Table 4-2: High Traffic Volume Growth Locations

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Location</th>
<th>1998</th>
<th>2007</th>
<th>Absolute Growth</th>
<th>Percent Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop 20 (Bob Bullock Loop)</td>
<td>North of SH 359</td>
<td>15,800</td>
<td>41,000</td>
<td>25,200</td>
<td>159.5%</td>
</tr>
<tr>
<td>Loop 20 (Bob Bullock Loop)</td>
<td>South of US 59 (Saunders)</td>
<td>16,700</td>
<td>41,000</td>
<td>24,300</td>
<td>145.5%</td>
</tr>
<tr>
<td>Loop 20 (Bob Bullock Loop)</td>
<td>East of IH 35</td>
<td>12,400</td>
<td>33,000</td>
<td>20,600</td>
<td>166.1%</td>
</tr>
<tr>
<td>IH 35</td>
<td>South of Mann</td>
<td>98,000</td>
<td>118,000</td>
<td>20,000</td>
<td>20.4%</td>
</tr>
<tr>
<td>Loop 20 (Bob Bullock Loop)</td>
<td>South of SH 359</td>
<td>14,500</td>
<td>33,000</td>
<td>18,500</td>
<td>127.6%</td>
</tr>
<tr>
<td></td>
<td>South of Calton</td>
<td>90,000</td>
<td>108,000</td>
<td>18,000</td>
<td>20.0%</td>
</tr>
<tr>
<td>IH 35</td>
<td>North of Killam Industrial</td>
<td>21,000</td>
<td>38,000</td>
<td>17,000</td>
<td>81.0%</td>
</tr>
<tr>
<td>Loop 20 (Bob Bullock Loop)</td>
<td>East of IH 35</td>
<td>14,200</td>
<td>31,000</td>
<td>16,800</td>
<td>118.3%</td>
</tr>
<tr>
<td>FM 1472 (Mines Rd)</td>
<td>North of Las Cruces</td>
<td>24,000</td>
<td>38,000</td>
<td>14,000</td>
<td>58.3%</td>
</tr>
<tr>
<td>Loop 20 (Bob Bullock Loop)</td>
<td>North of US 59 (Saunders)</td>
<td>14,100</td>
<td>28,000</td>
<td>13,900</td>
<td>98.6%</td>
</tr>
<tr>
<td>FM 1472 (Mines Rd)</td>
<td>North of Pan American</td>
<td>6,600</td>
<td>19,800</td>
<td>13,200</td>
<td>200.0%</td>
</tr>
<tr>
<td>Spur 400 (Clark Blvd)</td>
<td>East of Arkansas</td>
<td>8,900</td>
<td>21,000</td>
<td>12,100</td>
<td>136.0%</td>
</tr>
<tr>
<td>FM 1472 (Mines Rd)</td>
<td>South of FM 3338 (Las Tiendas)</td>
<td>6,400</td>
<td>17,900</td>
<td>11,500</td>
<td>179.7%</td>
</tr>
</tbody>
</table>

Source: TxDOT, Transportation Planning and Programming Division
Vehicle Miles Traveled

Vehicle-Miles Traveled (VMT) is the total number of miles driven by all vehicles within a given time period and geographic area. It is influenced by factors such as population, the number of vehicles per household, the number of car trips per day, and distance traveled. The daily VMT for Webb County for years 1998 to 2007 was obtained from TxDOT and summarized in Figure 4-3.

Figure 4-3: Daily Vehicle Miles Traveled, Webb County

VMT is important in evaluating how well transportation investments and land use policies work together. In the Laredo region VMT has risen steadily over the last decade. VMT directly affects gas consumption, emissions, and traffic patterns. Reduction in VMT can be attained through shifts to other modes of travel, such as transit, bicycling or walking. Land use policies that encourage a mix of uses often result in shorter driving distances, and hence lower VMT.

Truck Volumes

TxDOT collects traffic volume data by vehicle type (i.e., cars, trucks, motorcycles) on an annual basis at six non-border crossing locations throughout the Laredo region. This data shows that truck volumes have shown no marked trend over the past ten years. The location with the highest observed truck volume was along IH 35 north of Uniroyal Dr. Figure 4-4 illustrates truck volume trends for various locations throughout the region. It should be noted that the volumes in the figure represent mainlane volumes only (i.e., frontage roads are not included) and that the values are based upon a 24-hour or 48-hour sample.
Level of Service Analysis

Congestion on a roadway can be indicated by its level-of-service. Level-of-service (LOS) is a qualitative measure of traffic operations, ranging in values from LOS A to LOS F, and is based upon the ratio of a roadway’s traffic volume to the roadway’s capacity. The graphic to the right describes the conditions a driver would experience on a roadway given a particular level of service rating.

The primary factors in determining a roadway’s capacity include the number of travel lanes, the type of traffic control at intersections, the number of access points, and speed limit.

A planning level capacity assessment of existing roadway system traffic conditions was developed using the regional travel demand model. This model was updated to a base year of 2008 and attempts to predict travel conditions in the region by looking at both the supply of and demand for transportation. The supply dimension of the model is reflected in the roadway network, while the socioeconomic data of the region reflects the demand side of the equation.
According to the updated 2008 base year travel demand model, current roadway congestion is most severe along the Interstate 35, US 83 in south Laredo, along US 59 (Guadalupe St and Chihuahua St), and portions of McPherson Road. The level of service for all model roadways is shown in Figure 4-5.

Figure 4-5: Existing Level of Service, 2008
The process of projecting population and job growth for the year 2035 was presented in the previous chapter. According to official estimates the number of jobs and people in the Laredo region is expected to more than double, and most of this growth is expected to occur in currently undeveloped areas. As development continues along the fringes of the city, the existing road network can absorb only so much of the increased demand. As shown in Figure 4-6, the area’s congestion levels will rise substantially if no additional transportation investments, beyond those that are currently committed in the current Transportation Improvement Program, are made.

Figure 4-6: Future Level of Service, 2035
Crash Data

According to TxDOT’s Crash Records Inventory System, approximately 18,350 crashes occurred within the Laredo area between 2005 and 2007. Among these, 40 were fatal, 219 involved pedestrians, and 51 involved bicyclists.

Table 4-3 and Figure 4-7 identify the top 20 intersections with crash occurrences. The most accidents occurred at the junction of two of the busiest arterial roadways in Laredo, McPherson Rd. and Del Mar Blvd. In addition, the junction of US 83 and SH 359 is the fourth highest crash location. However, this intersection was recently reconfigured, and thus should have far fewer crashes in the future.

Table 4-3: Top 20 Crash Locations, 2005 to 2007

<table>
<thead>
<tr>
<th>Intersection</th>
<th># of Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. McPherson Rd. and Del Mar Blvd.</td>
<td>287</td>
</tr>
<tr>
<td>2. IH 35 and US 83 (Matamoros St.)</td>
<td>214</td>
</tr>
<tr>
<td>3. Loop 20 (Bob Bullock Loop) and US 59 (Saunders St.)</td>
<td>162</td>
</tr>
<tr>
<td>4. US 83 (Zapata Hwy) and SH 359</td>
<td>155</td>
</tr>
<tr>
<td>5. McPherson Rd. and Calton Rd.</td>
<td>147</td>
</tr>
<tr>
<td>6. US 83 (Zapata Hwy) and Masterson Rd.</td>
<td>129</td>
</tr>
<tr>
<td>7. IH 35 and Victoria St.</td>
<td>129</td>
</tr>
<tr>
<td>8. McPherson Rd. and Jacaman Rd.</td>
<td>127</td>
</tr>
<tr>
<td>9. FM 1472 (Mines Rd.) and Milo Rd.</td>
<td>125</td>
</tr>
<tr>
<td>10. Loop 20 (Bob Bullock Loop) and SH 359</td>
<td>113</td>
</tr>
<tr>
<td>11. IH 35 and Calton Rd.</td>
<td>112</td>
</tr>
<tr>
<td>12. US 83 (Zapata) and Loop 20 (Bob Bullock)</td>
<td>111</td>
</tr>
<tr>
<td>13. IH 35 and Mann Rd.</td>
<td>109</td>
</tr>
<tr>
<td>14. IH 35 and US 59 (Saunders St.)</td>
<td>105</td>
</tr>
<tr>
<td>15. McPherson Rd. and International Blvd.</td>
<td>101</td>
</tr>
<tr>
<td>16. Loop 20 (Bob Bullock Loop) and Spur 400 (Clark Blvd.)</td>
<td>101</td>
</tr>
<tr>
<td>17. IH 25 and Loop 20 (Bob Bullock Loop)</td>
<td>101</td>
</tr>
<tr>
<td>18. McPherson Rd. and Hillside Rd.</td>
<td>101</td>
</tr>
<tr>
<td>19. Santa Rita Ave. and Water St.</td>
<td>93</td>
</tr>
<tr>
<td>20. McPherson Rd. and Commerce Dr.</td>
<td>87</td>
</tr>
</tbody>
</table>

Source: TxDOT, Traffic Operations Division
Figure 4-7: Top 20 Crash and All Fatal Crash Locations, 2005 to 2007
Bridges

In the Laredo MPO planning area, there are a total of 143 bridge structures. Of these structures, three are owned by railroads, nine are owned by Webb County, 31 are owned by the City of Laredo, and 100 are owned by TxDOT. TxDOT’s bridge inventory data and FHWA’s National Bridge Inventory was used to ascertain the age of the bridges and whether they were rated as “structurally deficient” or “functionally obsolete”. While no bridge structures in the region were rated as “structurally deficient”, 16 of the 143 bridges (11.2%) were rated as “functionally obsolete”. Of the 16 “functionally obsolete” bridges, most were built before 1970 and a little over half of them were located in central Laredo.

Figure 4-8 shows the number of bridges built during each decade, while Figure 4-9 displays the spatial location of these bridges according to the decade in which they were built. As shown, most bridges were built during the 1990s and 2000s with a total of 43 built in the 1990s and 25 built in the 2000s. The increase in bridges in the last two decades is mostly due to new road construction during this same time period such as the Camino Colombia Toll Road and Bob Bullock Loop. Also, the lack of “structurally deficient” bridges and low amount of “functionally obsolete” bridges tends to correlate with the number of newer bridges.

Figure 4-8: Number of Bridges by Decade Built

Source: TxDOT, Bridge Division
Figure 4-9: Bridges by Decade Built
International Bridges

Border traffic at the international bridge crossings is a significant concern in the Laredo region. In fact, according to the Laredo Development Foundation, the city of Laredo is the number one inland port on the US/Mexico border.

Within the State of Texas, there are 26 international border roadway crossings that join the United States and Mexico. Of these 26 roadway crossings, four of them are situated within the Laredo area:

- Gateway to the Americas (Bridge #1)
- Juarez-Lincoln Bridge (Bridge #2)
- Laredo-Colombia Solidarity Bridge (Bridge #3)
- World Trade Bridge (Bridge #4)

In addition, an international railroad bridge exists just west of the Juarez-Lincoln roadway bridge (Bridge #2).

These crossings, shown in Figure 4-10, are not only important in terms of international trade and commerce, but also in terms of the overall movement and mobility patterns of the two countries and immediate communities on both sides of the international border. Clearly, these crossings play an important role on both a local and international scale.

Increased population and trade will continue to be a concern in the Laredo region, and so the international border crossings must be able to keep up with user demands. Because of this, it is important to understand the existing conditions of the crossings in order to identify potential improvements of the infrastructure. The following subsections describe existing border crossing characteristics as well as historical traffic conditions.

All four bridges in the Laredo Bridge System, except for the Gateway to the Americas Bridge, offers a “Laredo Trade Tag” (LTT), which is based on an Automatic Vehicle Identification (AVI) system and enables both commercial and non-commercial customers an alternative form of toll payment. Also, the Laredo Bridge System operates a series of cameras located on each of the international crossings, which every few minutes takes pictures of traffic conditions. These pictures can be accessed online at www.ci.laredo.tx.us/bridgesys/bridge4cam.html and provide bridge users with up-to-date information on traffic conditions and operations.
Figure 4-10: International Border Crossings
Gateway to the Americas (Bridge #1)

The Gateway to the Americas crossing, which is known locally as Bridge #1, is located in downtown Laredo on Convent Avenue near its intersection with US 83. The crossing is a tolled facility and handles privately owned vehicles (POV) and pedestrians. It is accessed southbound from Santa Maria Avenue and northbound via Convent Avenue. The City of Laredo owns the bridge facility while the General Services Administration owns the border station. The crossing is open 24 hours a day, seven days a week. The bridge itself is a four lane facility with two lanes in each direction. Pedestrian accommodations occur on both sides of the bridge. The total length of the bridge is approximately 1,050 feet, and it operates 24 hours a day for pedestrians and POV. It was reconstructed in 1956 after being destroyed in 1954 by floods resulting from a hurricane in the Gulf of Mexico.

Figure 4-11 shows border traffic coming into the US and Mexico via the Gateway to the Americas Bridge for the years 2001 to 2007. The bridge primarily serves as the main pedestrian crossing for the Laredo region. In previous years, it did serve some 35,000 commercial vehicles commuting into Mexico between 2001 and 2003; however, the bridge now serves pedestrians and non-commercial vehicles only. For non-commercial vehicles, there has been a general decline in traffic volumes between 2001 and 2007. Pedestrian traffic is more than twice as much as non-commercial traffic. In general, pedestrian traffic in both directions has remained relatively stable over the last seven years.

Figure 4-11: Gateway to the Americas Bridge Crossings, 2001 to 2007

Source: TxDOT International Relations Office and Laredo Bridge System
Juarez-Lincoln Bridge (Bridge #2)

The Juarez-Lincoln Crossing, known locally as Bridge #2, is a POV and buses only bridge. The crossing is tolled and is located in downtown Laredo on San Dario Avenue near its intersection with US 83, at the beginning of Interstate 35. Santa Ursula Avenue carries southbound traffic toward the crossing, while northbound traffic uses San Dario Avenue. The bridge is open continuously, 24 hours a day, seven days a week. The bridge itself is an eight-lane facility, four lanes in each direction, and has a non-commercial Automatic Vehicle Identification dedicated lane. The length of the bridge is approximately 1,010 feet and operates 24 hours a day for POVs. Intelligent traffic systems (ITS) are deployed on the northbound and southbound approaches to the bridge on the US side of the border. The bridge became operational in 1976 and is owned by the City of Laredo. The border station was completed in 1982 and is owned by the US General Services Administration.

Figure 4-12 shows border traffic coming into the US and Mexico via the Gateway to the Americas Bridge for the years 2001 to 2007. Compared with the other border crossings, the Juarez-Lincoln Bridge handles the most non-commercial traffic. However, this traffic has been significantly decreasing over the past few years.

Figure 4-12: Juarez-Lincoln Bridge Crossings, 2001 to 2007

Source: TxDOT International Relations Office and Laredo Bridge System
The Laredo-Colombia Solidarity Bridge is located on FM 255 near its intersection with FM 1472, locally known as Mines Rd. It was completed in the summer of 1991 and is approximately 1,215 feet long. The crossing is a tolled facility that handles both commercial and non-commercial vehicles, as well as pedestrian traffic. For commercial traffic the bridge is open from 8:00am to midnight Monday through Friday, from 8:00am to 4:00pm on Saturday, and from 10:00am to 2:00pm on Sunday.

The eight-lane bridge is the designated crossing within the Laredo region for transporting hazardous materials between Mexico and the US. The City of Laredo owns the bridge facility while the General Services Administration owns the border station.

Figure 4-13 shows border traffic coming into the US and Mexico via the Laredo-Colombia Solidarity Bridge for the years 2001 to 2007. Both inbound and outbound commercial traffic declined immediately following the events of September 11th. However, it has been gradually increasing since then. Pedestrian traffic, data for which is only available for incoming foot traffic, has stayed relatively constant over the past several years.

Figure 4-13: Laredo-Colombia Solidarity Bridge Crossings, 2001 to 2007

Source: TxDOT International Relations Office and Laredo Bridge System
World Trade Bridge (Bridge #4)

The World Trade Crossing is located on Loop 20 near its intersection with FM 1472, locally known as Mines Rd. This eight-lane bridge is open to commercial vehicles only. Pedestrians do cross from Mexico to the US northbound on this bridge, but the bridge is not intended for pedestrian traffic, and southbound pedestrian traffic is prohibited. The bridge and border station opened on April 15, 2000. The City of Laredo owns the border station while the US General Services Administration leases the facilities. The tolled bridge has eight-lanes and is approximately 975 feet in length. It is the busiest international bridge in Texas, carrying over one-third of inbound trucks.

Figure 4-14 shows border traffic coming into the US and Mexico via the World Trade Bridge for the years 2001 to 2007. In particular, the World Trade Bridge serves as the primary commercial vehicle bridge in the region. From 2001 to 2007, commercial traffic in both directions has risen slightly, with northbound traffic lagging slightly behind southbound traffic. A recent six-month pilot program to keep the bridge open 24 hours a day was suspended, and the bridge is now open from 8:00am to midnight Monday through Friday (although northbound traffic is permitted to cross at 6:00am), 8:00am to 4:00pm on Saturday, and from 10:00am to 2:00pm on Sunday.

Figure 4-14: World Trade Bridge Crossings, 2001 to 2007

Source: TxDOT International Relations Office and Laredo Bridge System

Border Crossing System

Currently, the two south border crossings near central Laredo serve a significantly higher proportion of overall traffic volumes than do the bridges further north. This is particularly true for non-commercial and pedestrian traffic. However, non-commercial traffic has decreased for both south bridges, but
has increased for the Laredo-Colombia Solidarity Bridge. As the primary commercial bridge for the Laredo region, the World Trade Bridge has seen more increases in commercial traffic volumes. Since its opening in 2000, the bridge has served the Laredo region well by taking commercial traffic away from the central city area. Far from the other more southern bridges, the Laredo-Colombia Solidarity Bridge, with its tolled state highway corridor, handles the least amount of overall traffic. However, it has seen more use in current years for both commercial and non-commercial traffic.

Figure 4-15 shows the distribution of commercial, non-commercial, and pedestrian traffic for all bridge crossings in 2007. Out of a total of 23.3 million crossings, about 3.2 million were commercial vehicles, 11.3 million were non-commercial vehicles, and about 8.8 were pedestrians.

Figure 4-15: Total Bridge Crossings, 2007

![Graph showing total bridge crossings for 2007, categorized by commercial, non-commercial, and pedestrian traffic.](image)

Source: TxDOT International Relations Office and Laredo Bridge System

Figure 4-16 shows border traffic coming into the US and Mexico for all border crossings in the Laredo region for years 2001 to 2007. In general, commercial traffic has increased slightly over recent years, pedestrian traffic has remained relatively stable, and non-commercial traffic for all bridges has decreased substantially.

Figure 4-16: Total Border Crossings, 2001 to 2007

![Graph showing total border crossings for 2001 to 2007, categorized by traffic direction and type.](image)

Source: TxDOT International Relations Office and Laredo Bridge System
Border Crossing Issues

A June, 2008 TxDOT Border Crossing Travel Time Study report was produced to document the existing needs and conditions at each border crossing in the Laredo District and to assess short-term improvement alternatives for the roadways in the vicinity of the border crossings.

For the four international border crossings in the Laredo MPO planning area, the study found that the main factor affecting the flow of traffic for these crossings was Port of Entry (POE) operations. While these operations are necessary, they are out of the hands of state jurisdiction. The study found that TxDOT would be most effective by regularly monitoring traffic conditions and implementing short-term improvement projects. Bridge-specific highlights of this study are shown in Table 4-4.

Table 4-4: Short-term Border Crossing Improvement Recommendations

<table>
<thead>
<tr>
<th>Gateway to the Americas Bridge</th>
<th>Juarez-Lincoln Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issues: Safety concerns in relation to lane assignment confusion over the Automatic Vehicle Identification (AVI) lane</td>
<td>Issues: Conflicts of turning movement and lane assignments; absence of pavement markings and signage</td>
</tr>
<tr>
<td>Recommendations: synchronizing traffic signals, installing ITS devices, and improving or adding signs to indicate lane assignments</td>
<td>Recommendations: synchronizing traffic signals, installing ITS devices, improving or adding signs to indicate lane assignments, installing dual left-turn lanes at problem intersections, and restriping of lanes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laredo-Colombia Solidarity Bridge</th>
<th>World Trade Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issues: Port of Entry (POE) configuration, internal circulation, and outdated facility layouts. FM 255 and FM 1472 turning movement safety issues and traffic queues at the inspection facility</td>
<td>Issues: mixing of commercial traffic types, capacity inadequacies, the lack of an adequate amount of inspection booth</td>
</tr>
<tr>
<td>Recommendations: adding a traffic signal at FM 1472/FM 255 intersection, lane striping, improving/adding signage, adding a right-turn lane for traffic entering the facility, and increasing the acceleration lane for commercial trucks exiting the facility</td>
<td>Recommendations: improving traffic signal phasing and timing at certain key intersections and improving/adding signs to the immediate area surrounding the border crossing</td>
</tr>
</tbody>
</table>

Source: TxDOT Border Crossing Travel Time Study, June 2008
Public Transportation

As explained in more depth in the Regional Context chapter, a smaller percentage of workers in Webb County tend to drive alone to work and a larger percentage of workers either carpooled or used public transit to travel to work as compared with the rest of Texas in 2007. Furthermore, a larger percentage of the population in Webb County also tended to have no access to any vehicle as compared with the rest of Texas and the United States. These characteristics are important when understanding the demand and need for alternative modes of transportation such as public transit, walking, and bicycling. As such, it is essential to also focus on these alternative modes of transportation in order to provide for a comprehensive, multimodal transportation plan for the Laredo region.

Transit Services

Fixed Route Service

El Metro is the primary transit provider in the Laredo region, which operates 49 buses for its 22 fixed bus routes. It also operates two Chance Trolleys and 18 diesel-powered vans for its El Lift ADA paratransit service. As of 2007, the average bus fleet age was 8.7 years and the average van fleet age was 5 years. El Metro’s bus fleet is presently powered mainly by compressed natural gas (CNG), which is more environmentally friendly and less expensive than regular gasoline and diesel fuel. In addition, all new model buses have bike racks, which are capable of carrying two bicycles.

Since 2003, First Transit has administered the operational duties of El Metro and the El Metro Transit Center. Currently, El Metro employs about 187 people, has an operating budget of approximately $12.5 million, a capital budget of about $8.5 million, and an annual ridership of about 4.3 million passengers.

El Metro’s major transportation facility is the five-story Laredo Transit Center located in downtown Laredo at 1301 Farragut Street across from Jarvis Plaza. The transit center serves as a multimodal transportation terminal for the Laredo region and is the main point of transfer for El Metro routes, El Aguila rural routes, and inter-city services like Valley Transit and Greyhound. It also houses El Metro’s administrative offices and a public parking garage for downtown visitors. Additionally, El Metro has a park and ride lot located at the airport on Hillside Road and is presently underutilized.
Paratransit Service

The El Lift Paratransit Service provides persons within the City of Laredo, who are unable to utilize the El Metro fixed route system due to a disability, with shared, curb-to-curb public transportation. Wheel chair lifts are provided on all vans as well as on all fixed route buses. In order to use El Lift, a personal doctor or social service agency must determine a person’s eligibility. Eligible passengers must schedule trips in advance by calling El Lift customer service.

Hours of Operation

The fixed route system operates Monday through Saturday from 6:00 am until 10:00 pm, with peak level operating hours from 6:00 to 9:00 am and 3:00 to 6:00 pm. Additionally, the fixed route system operates from 7:00 a.m. to 8:30 p.m. on Sundays and major holidays. The demand response or El Lift system operates Monday through Saturday from 6:00 am to 10:00 pm and on Sunday and major holidays from 7:00 am to 9:30 pm.

Fares

El Metro fixed route bus fares are listed in Table 4-5. Electronic value cards can be purchased on the buses or at the ticket vending machines at the El Metro Transit Center and can store up to $20 worth of bus fares. Additionally, eligible El Lift passengers can purchase a 10-ride book for $7.50 to ride the El Lift van.

Table 4-5: Current El Metro Fare Structure

<table>
<thead>
<tr>
<th>Fare Type</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>$1.25</td>
</tr>
<tr>
<td>Students with I.D.</td>
<td>$1.00</td>
</tr>
<tr>
<td>Children 5 - 11 years of age</td>
<td>$0.25</td>
</tr>
<tr>
<td>Children under 5 years of age</td>
<td>Free</td>
</tr>
<tr>
<td>Senior Citizens (62+) / Disabled w/ Metro I.D. (Peak Hours)</td>
<td>$0.10</td>
</tr>
<tr>
<td>Senior Citizens (62+) / Disabled w/ Metro I.D. (Off-Peak Hours)</td>
<td>Free</td>
</tr>
<tr>
<td>Medicare Card Holder w/picture I.D.</td>
<td>$0.50</td>
</tr>
<tr>
<td>Transfers</td>
<td>$0.05</td>
</tr>
<tr>
<td>El Lift Paratransit (eligible riders and guests)</td>
<td>$0.75</td>
</tr>
</tbody>
</table>

Source: El Metro

Demographic Characteristics of El Metro Riders

As part of the September 2009 Laredo Transit Development Plan, a survey of El Metro passengers was conducted. The purpose of the survey, which was conducted at the Laredo Transit Center, was to analyze the socio-demographic and travel behavior characteristics of El Metro riders. The following characteristics were revealed:
- Spanish was the primary language of El Metro riders (91%)
- 81% of the riders did not own any vehicle
- Half of the riders were employed, with 29% of them employed full-time and 22% of them employed part-time
- Personal trips (e.g., shopping) were the primary purpose, while only 29% of riders were traveling to or from work
- Nearly half (45%) of those interviewed at the Transit Center were making trips to or from Mexico
- 75% percent of riders did not make any transfers
- 84% used the El Metro system at least twice a week, and only 15% of riders used it daily

These characteristics were based completely on the 412 usable surveys gathered at the Laredo Transit Center. As such, this data may not necessarily represent the full spectrum of transit riders, because based on the unexpanded sample data derived from the boarding and alighting survey, approximately 35 percent of riders do not pass through the Transit Center.

Level of Service - Revenue Miles, Revenue Hours

A transit system’s level of service can generally be determined by the amount of revenue hours and revenue miles that the whole system experiences during a given time period. Revenue hours and revenue miles are the total amount of hours and miles for all vehicles in a transit system when the vehicles are available to the general public. Table 4-6 illustrates annual revenue hours and miles for the years 2002 through 2007 for both the demand response El Lift service and fixed route bus service.

The extent of fixed route service has remained relatively stable over the past six years, while the amount of demand responsive service has shown a marked increase over the same time period. This fact points to the growing need of specialized transit services for those individuals unable to utilize the fixed route service.

Table 4-6: Annual Vehicle Revenue Miles and Hours of Service

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Route</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Revenue Miles</td>
<td>1,937,832</td>
<td>1,777,531</td>
<td>1,783,037</td>
<td>1,765,835</td>
<td>1,766,513</td>
<td>1,716,113</td>
</tr>
<tr>
<td>Vehicle Revenue Hours</td>
<td>154,492</td>
<td>154,385</td>
<td>154,437</td>
<td>165,129</td>
<td>165,859</td>
<td>161,557</td>
</tr>
<tr>
<td>Demand Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Revenue Miles</td>
<td>154,544</td>
<td>159,142</td>
<td>160,549</td>
<td>220,903</td>
<td>272,481</td>
<td>279,904</td>
</tr>
<tr>
<td>Vehicle Revenue Hours</td>
<td>26,260</td>
<td>24,263</td>
<td>24,002</td>
<td>26,714</td>
<td>29,693</td>
<td>30,600</td>
</tr>
</tbody>
</table>

Source: National Transit Database
Transit Use – Ridership

Transit utilization is determined by the level of ridership or passenger trips on a system. Passenger miles traveled is the sum of the distances ridden by each passenger in a transit system. Unlinked passenger trips refer to the total number of passengers who board public transit vehicles, regardless of how many vehicles it takes to reach a destination. Table 4-7 presents annual passenger miles and unlinked trips for the years 2002 through 2007. Ridership estimates dropped significantly in 2004, which, according to the Laredo Transit Development Plan, was due to the installation of new Odyssey GSI fareboxes that provided more accurate passenger data than the ones that were replaced.

From 2004 to 2007, ridership levels exhibited a positive increase for fixed route operations. In fact, the El Metro system is the most heavily used transit system in urban areas with less than 200,000 population in the state of Texas.

Table 4-7: Annual Passenger Miles and Unlinked Trips

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Route</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger Miles</td>
<td>21,524,492</td>
<td>21,535,157</td>
<td>15,893,177</td>
<td>11,999,473</td>
<td>12,845,289</td>
<td>13,311,072</td>
</tr>
<tr>
<td>Unlinked Trips</td>
<td>4,596,162</td>
<td>4,964,495</td>
<td>3,661,883</td>
<td>3,898,147</td>
<td>4,176,073</td>
<td>4,324,395</td>
</tr>
<tr>
<td>Demand Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger Miles</td>
<td>141,024</td>
<td>145,671</td>
<td>157,193</td>
<td>216,642</td>
<td>293,668</td>
<td>256,981</td>
</tr>
<tr>
<td>Unlinked Trips</td>
<td>$52,520</td>
<td>48,263</td>
<td>51,965</td>
<td>52,227</td>
<td>54,307</td>
<td>51,548</td>
</tr>
</tbody>
</table>

Source: National Transit Database

Bus Routes and Stops

El Metro operates 22 fixed bus routes, all of which pass through the El Metro Transit Center. Figure 4-17 below presents the El Metro fixed route bus system.
Table 4-8 shows the frequency and approximate daily ridership levels for each route.

Source: El Metro
<table>
<thead>
<tr>
<th>Route</th>
<th>Route Name</th>
<th>Approximate Frequency (in minutes)</th>
<th>Ridership</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peak Day Eve</td>
<td>Day Eve</td>
</tr>
<tr>
<td>1</td>
<td>Santa Maria</td>
<td>20 20 20-55</td>
<td>20 20-55</td>
</tr>
<tr>
<td>2A</td>
<td>San Bernardo</td>
<td>30 30 30-60</td>
<td>30 30-60</td>
</tr>
<tr>
<td>2B</td>
<td>San Bernardo</td>
<td>30 30 30-60</td>
<td>30 30-60</td>
</tr>
<tr>
<td>3</td>
<td>Convent</td>
<td>45 45 45</td>
<td>45 45</td>
</tr>
<tr>
<td>4</td>
<td>Springfield</td>
<td>37-38 37-38 37-38</td>
<td>37-38 37-38</td>
</tr>
<tr>
<td>5</td>
<td>Tilden</td>
<td>70 70 70</td>
<td>70 70</td>
</tr>
<tr>
<td>6</td>
<td>Cedar</td>
<td>30 60 60</td>
<td>60 60</td>
</tr>
<tr>
<td>7</td>
<td>LCC</td>
<td>30-60 30-60 30-60</td>
<td>30-60 30-60</td>
</tr>
<tr>
<td>8A</td>
<td>Guadalupe/Lane</td>
<td>70 70 70</td>
<td>70 70</td>
</tr>
<tr>
<td>8B</td>
<td>Guadalupe/Villa Del Sol</td>
<td>70 70 70</td>
<td>70 70</td>
</tr>
<tr>
<td>9</td>
<td>Market</td>
<td>45 45 44-90</td>
<td>45 45</td>
</tr>
<tr>
<td>10</td>
<td>Corpus Christi</td>
<td>30 30 30</td>
<td>30 30</td>
</tr>
<tr>
<td>11</td>
<td>Gustavus/LEC</td>
<td>75 75 75</td>
<td>75 75</td>
</tr>
<tr>
<td>12A</td>
<td>Del Mar Express</td>
<td>30 60 60</td>
<td>60 60</td>
</tr>
<tr>
<td>12B</td>
<td>Shiloh Express</td>
<td>30 60 60</td>
<td>75 75</td>
</tr>
<tr>
<td>13</td>
<td>Heritage Park</td>
<td>75 75 –</td>
<td>75 –</td>
</tr>
<tr>
<td>14</td>
<td>Santa Rita</td>
<td>90 90 90</td>
<td>90 90</td>
</tr>
<tr>
<td>15</td>
<td>Main/Riverside</td>
<td>60 60 60</td>
<td>60 60</td>
</tr>
<tr>
<td>16</td>
<td>TAMIU</td>
<td>30 60 60</td>
<td>60 60</td>
</tr>
<tr>
<td>17</td>
<td>Mines Road</td>
<td>37 75 75</td>
<td>75 75</td>
</tr>
<tr>
<td>19</td>
<td>Santo Niño</td>
<td>70 70 70</td>
<td>70 70</td>
</tr>
<tr>
<td>20</td>
<td>Los Angeles</td>
<td>85 85 85</td>
<td>85 –</td>
</tr>
</tbody>
</table>

Source: El Metro and 2008 El Metro Boarding and Alighting Survey (n/a=not available)
The ridership data is based on an expanded sample of the boarding and alighting survey done in the summer of 2008 for the Laredo Transit Development Plan. Based on the above ridership levels, it is evident that the most popular routes during the weekdays are Route 1 Santa Maria, Routes 2A and 2B San Bernardo, Route 3 Convent, and Route 9 Market. Each of these routes carry over a thousand passengers during the weekdays and account for approximately 34 percent of the weekday total. Similarly, the most popular routes on Saturdays and Sundays are by far Route 1 Santa Maria and Route 2A San Bernardo.

In particular, Route 1 serves downtown Laredo along Santa Maria Avenue between the Transit Center and the retail destinations of Mall del Norte and Target, while Route 2A operates in a similar fashion along the busy commercial corridor of San Bernardo and connects the Transit Center with Mall del Norte. Route 2B follows the same alignment as Route 2A along San Bernardo until it heads east on Hillside towards the park and ride lot near the airport and circles back to downtown via Calton Road. Similarly, Route 3 begins at the Transit Center downtown but heads in a mainly northwest direction, serving such destinations as the Laredo Medical Center, Laredo Main Library, and the Doctor’s Hospital of Laredo. Route 4 also begins at the Transit Center downtown and travels in a mainly north/southern direction, serving the Springfield Avenue corridor.

Operating Costs and Funding Sources

In 2007, El Metro incurred approximately $12.8 million in operating expenses for its fixed route and demand response services. This represented $0.81 per passenger mile on the fixed bus routes and $7.84 per passenger mile on the El Lift vans. Table 4-9 exhibits annual operating expenses and the operating expense per passenger mile for El Metro’s transit services from 2002 through 2007.

| Table 4-9: Annual Operating Expenses |
|-----------------|--------|--------|--------|--------|--------|--------|
| | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| **Fixed Route** | | | | | | |
| Operating Expenses | $7.831m | $8.584m | $9.226m | $9.866m | $10.568m | $10.827m |
| Operating Expense per Passenger Mile | $0.36 | $0.40 | $0.58 | $0.82 | $0.82 | $0.81 |
| **Demand Response** | | | | | | |
| Operating Expenses | $1.844m | $1.797m | $1.596m | $1.654m | $1.828m | $2.015m |
| Operating Expense per Passenger Mile | $13.07 | $12.34 | $10.15 | $7.64 | $6.22 | $7.84 |

Source: National Transit Database
El Metro’s services are funded mostly through user fees (fares), sales tax, state funds, and federal funds, while a small percentage are covered by other funds such as advertising sales. Figure 4-18 shows the specific breakdown by funding source.

Presently, about 3% of the local sales tax (or 0.25% of all sales made locally) are contributed to covering operating expenses. This amount accounted for about $4.6 million of operating expenses in 2007, while federal funds accounted for $4.1 million and state funds covered only about $635,000. In particular, funds provided by the Federal Transit Administration (FTA) to subsidize the operating expenses of the fixed route transit system may not be available for the Laredo region after 2010. Currently, the FTA does not permit these types of funds to subsidize transit operating expenses for urbanized areas over 200,000 people. In addition, El Metro will no longer be eligible for state funding assistance according to the Texas Transportation Code 456.003. In the next census in 2010, the Laredo region is forecasted to be well over 200,000, thereby decreasing the amount of both federal and state transit funding assistance it will be eligible to receive.

Fare revenues contributed a total of about $2.8 million for operating expenses in 2007. Table 4-10 below shows the amount of fare revenues collected each year from 2002 through 2007. The significant change in fare revenues collected from 2003 and 2004 for the fixed route services was related to the increase in fares in 2004.

Table 4-10: Annual Fare Revenues

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Route</td>
<td>$2.086m</td>
<td>$1.945m</td>
<td>$2.406m</td>
<td>$2.484m</td>
<td>$2.674m</td>
<td>$2.775m</td>
</tr>
<tr>
<td>Demand Response</td>
<td>$29,593</td>
<td>$30,578</td>
<td>$30,167</td>
<td>$32,242</td>
<td>$34,561</td>
<td>$33,109</td>
</tr>
</tbody>
</table>

Source: National Transit Database

El Aguila

El Aguila is the designated rural public transit provider in Webb County and connects patrons living in the rural parts of Webb County to the City of Laredo’s fixed route system at certain
route stops and the transit center in downtown Laredo. El Aguila’s fleet of 23 vehicles operates approximately 342,800 miles and 17,285 hours annually and transports about 110,000 passengers a year. El Aguila provides both fixed route and demand response services to the general public, including the elderly, persons with disabilities, students, and welfare-to-work participants.

Greyhound

Greyhound Lines, Inc. is the largest provider of intercity bus transit services in the United States, with 2,300 destinations and 13,000 departures daily throughout North America. Within the Laredo region, Greyhound’s Laredo station is co-located at the El Metro Transit Center. According to scheduling information, provided online through Greyhound’s website, the highest frequency of passenger services occurs between Laredo and San Antonio, with approximately 17 one-way, non-stop trips per day. Other non-stop destinations from Laredo to major cities include Austin, Dallas, and Houston. These services are provided through the Valley Transit Company and Americanos USA, which are operating subsidiaries in the Greyhound family of services. Besides providing passenger services, Greyhound also provides same-day and next-day package delivery, as well as charter services for businesses, conventions, schools, and other groups.

Bicycle and Pedestrian Facilities

By providing a means for other forms of transportation, bicycle and pedestrian facilities, such as sidewalks and bicycle lanes, play an important role in a region’s transportation system. This is especially true for the Laredo region, which overall has comparatively less personal vehicle ownership. Moreover, the city has a thriving downtown retail environment which is enjoyed by thousands of ‘on-foot’ shoppers. Therefore, the downtown sidewalk system represents an important asset to preserve and maintain.

Bicycle and pedestrian facilities assist in reducing vehicle congestion and the resulting pollution, which is important for improving air quality and achieving other sustainability objectives. In particular, people worldwide are generally more cognizant of the importance of preserving the environment and are increasingly focused on more efforts to reduce their overall effect on the environment.

When constructing new multi-use trails, it is important to ensure that they are located in proximity to non-vehicular dependent populations, densely populated areas, and mixed land uses in order to maximize their benefits. The following safety factors should also be considered: the separation of cars from bicyclists and pedestrians, proper street and intersection design, and compliance with American with Disabilities Act (ADA) standards. Further, these facilities should also be considered in conjunction with the regional transit system in order to provide access to transit stops and to increase the use of public transit.

An existing bicycle route is located along Clark Boulevard (Spur 400) between Bob Bullock Loop (Loop 20) and Ejido Avenue. In addition, there is a long bicycle/jogging path along the northbound side of Bob...
Bullock Loop (Loop 20) from US 59 to University Boulevard. Sidewalk facilities are located along most streets and within most developments.

As mentioned in the safety section under existing roadway conditions, out of 18,000 total accidents that occurred in the Laredo region between 2005 and 2007, 219 included incidents involving pedestrians and 51 included incidents involving bicyclists. The locations of these crashes are shown in Figure 4-19.

Figure 4-19: Crashes involving Bicycles and Pedestrians, 2005 to 2007

Air Transportation

The Laredo International Airport (LRD) is the primary airport in the Laredo region and provides air transportation services for both cargo and passengers. LRD is located on approximately 1,800 acres of the former Laredo Air Force Base in eastern Laredo and is generally bounded by U.S. 59 to the south, Lake Casa Blanca State Park and Loop 20 to the east, and Jacaman Rd to the north. In 2006, the Federal Aviation Administration (FAA)
named LRD “airport of the year” and has rated it as “exemplary” during airport inspection for certification every year since 2006.

LRD is owned and operated by the City of Laredo and provides daily commercial flights to Houston, Dallas/Fort Worth, and Las Vegas. Private fixed wing and helicopter service is also available. Additionally, LRD is classified as a Foreign Trade Zone (FTZ) site and can accommodate aeronautical and industrial purposes. Information on freight services is provided in more detail in Chapter 5.

Figure 4-20 portrays the total number of annual passengers at LRD from 1999 to 2008. After a small decline in the late 1990s and early 2000s, the number of passengers using the airport has shown a steady increase. However, the current economic downturn has caused a recent dip in the number of passengers.

Figure 4-20: Annual Airport Passengers

LRD’s airfield contains two parallel runways and one cross-wind runway. Taxiways connect the runways to the apron and terminal areas located on the west side of the airfield. The primary runway, Runway 17R/35R is approximately 7,800 feet long; while the secondary runway, Runway, 17L/35R is approximately 8,200 feet long. The cross-wind runway, Runway 14/32, is approximately 5,900 feet long. Further, LRD is aided by runway and taxiway lighting systems, an instrument landing system (ILS) for the primary runway, an air traffic control tower in operation 18 hours on the weekdays and 14 hours on the weekends, and other navigational aids for operation under both visual flight rule (VFR) and instrument flight rule (IFR) conditions.

The current passenger terminal is approximately 78,000 square feet and provides space for six airlines, five car rental agencies, a duty-free store, and government and federal inspection facilities. In particular, the passenger terminal has the potential to be expanded.
on surrounding available land. In fact, the *Laredo International Airport Master Plan Update* calls for it to be expanded by approximately 26,500 square feet with two additional gates in order to accommodate future demand.

LRD has a Federal Inspection Station that offers 24/7 federal inspection services, including custom, agriculture, and immigration services for the international aviation community. Additionally, the airport is serviced by two fixed base operators that provide general aviation services. Surrounding land on the city-owned airport property is available for lease, and other entities, such as the Laredo Police Department, are located on airport property. In addition, an El Metro park and ride lot is near the airport entrance.

Over the past 15 years, the City of Laredo and the FAA have invested over $100 million to upgrade the airport’s infrastructure. Projects that have been completed during this time period include:

- A totally reconstructed Runway 17L/35R to accommodate heavy aircraft
- Partial reconstruction of Runway 17R
- Engineered Materials Arresting System (EMAS)
- New and reconstructed cargo aprons with capacity to simultaneously park an additional 20 large cargo aircraft
- New and reconstructed taxiways, a new passenger terminal, and a new fuel farm
- Constructed airside cargo warehouses

The City of Laredo and the FAA also have further plans to improve the airport. Current and short-term, future planned improvements include the following projects:

- Reconstructing all pavements on runways, taxiways, and aprons
- Extension of Runway 17R/35L of approximately 800 feet to be completed by 2010.
- Acquisition of approximately 166 acres of land for the extension of Runway 17L/35R
- Installation of an instrument landing system (ILS) to enable precision landings to Runway 17L/35R
- Construction of a new federal inspection station on the west (general aviation) side of the airport to process private aircraft and air cargo only.
- Establishment of an airport noise compatibility program
- Upgrading airport roadways and parking lots to improve drainage and road access
- Construction of a new air traffic control tower, new aircraft rescue and fire fighting facility, new airport maintenance building, new rental car service center
- Rehabilitation of taxiways and taxiway extensions.
- Expansion of existing passenger terminal parking lot and its conversion to a paid parking facility.
Rail

The Laredo region is served by two of the seven Class I railroads in the country. The Kansas City Southern Railway (KCS) owns the international rail bridge and has an agreement with Union Pacific (UP) that allows UP to use the bridge. KCS railroad operations consist of an east-west railroad through the city and a switching yard terminal located about two miles east of Loop 20.

The Union Pacific operates a north-south railroad that generally parallels Santa Isabel Avenue and Interstate 35 throughout the Laredo region. The UP’s primary switching yard is located about four miles north of the junction of Interstate 35 and Loop 20, just south of the Unitec Industrial Park. The UP also maintains a terminal and yard just east of the Laredo Community College north campus, between Zaragosa and Moctezuma Streets.

A more thorough discussion of railroad operations and the amount and type of freight that these lines carry can be found in the following chapter.

Figure 4-21: Rail Network